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1 INTRODUCTION

This note serves as a guide for using and extending a finite difference
code used for the course titled Energy Transfer at INTEC

2 PROBLEM DEFINITION

The problem to be solved is defined as:

Find ¢(x,t) in Q such that

0
pCpa—f+v-Vg0—|—cg0:V-(/€Vgo)+g (1)

with ¢ normally the temperature, v the velocity vector normally associated
with the advection term, ¢ the reaction coefficient representing a linearized
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version of the heat released during chemical reactions, x the conductivity, p
the density and C), the specific heat at constant pressure of the media and
G a heat source term treated separately from the reaction term to consider
sources that not depend on the temperature.

Q) represents the domain of definition of our problem, in our case we restrict
only to cartesian coordinates on rectangular domains aligned with the carte-
sian axes, i.e. = [zg, 1] X [0, 1], with (zo,yo) the lower left corner of the
reactangular domain and (z1,y;) the upper right corner. The boundary of
the domain € is represented by I' = I', UT', U T, being the boundary part
where Dirichlet, Neumann or mixed (Robin) boundary conditions are applied
respectively.

The boundary conditions are the following:

=0 vxel,
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The initial conditions are p(z,t = 0) = @ from which the solution evolves in
time.

Steady state solutions may be reached dropping the temporal term and re-
moving the initial condition that in the linear case is irrelevant.

3 NUMERICAL APPROACH - DISCRETIZATION BY FINITE
DIFFERENCES

The following statement represent the discrete version of 1 using finite differ-
ences.

pii(Co): i ey + (v2)s Py = + (vy)i P = e
I g At Tiv1j — Ti1,j H Yij+1 — Yij-1
(qurl ')n+0 . (qmil ')n+0 (qy .+l)n+0 _ (qy '71)”+0 (3>
e jprt? = 27 i AL A I g
> 1,] _ — “J
xH%’j xi_%,j yﬁ? Y i %

with gp”*e = p(r = xij,y = yij,t = t" + 0At) the discrete approximation of
the continuous variable ¢ at some point in the space (x; ;,y = v; ;) and at the



time given by the last time ¢t = ¢" added by a fraction 6 € [0, 1] of the time
step At.

In the above equation (3) the heat flux is put inside, therefore two equations
arise from it. To reduce the problem to only one unknown we assume a con-
stitutive law that relates the heat flux with the energy, in this case with the
temperature, in the following form:
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Taking # = 0 we adopt the explicit formulation, a very simple scheme where
the new variable cp?je may be calculated directly (without any matrix system)
from the data and from the variable already known at older time steps, 7. If
6 = 1 the scheme is called implicit that needs the resolution of a matrix system
and obviously is more expensive that the explicit one, but with an implicit
treatment the numerical stability is larger than that with the explicit scheme.
This last feature implies that the time step for the explcit schem to evolve
in time is smaller than that of an implicit scheme. Finally to choose between
them we need to analyze the relation between physical characteristics time
steps with numerical one and if you need accuracy or not for the evolution in
time.

Both, § = 0,0 = 1 are first order in time, it means that the error in time
grows as O(At) If we adopt 6 = % the scheme changes to second order in time
(O(At?) and this strategy is normally chosen to enhance the time evolution
of our unknown.

3.1 FExplicit scheme

In this case the numerical equation to be solved is written as:
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where the whole righ hand size term is known at the beginning of each time
step and therefore making straighforward the computation of the variable
updating @'

Z7j :

3.2 Implicit scheme

The implicit case is much more difficult but however is in some situations much
more attractive than the explicit scheme. The implicit scheme needs the com-
putation of a matrix because in the original numerical equation 3 several terms

depends on the unknown variable ¢}/ " and its neighbours ¢}, i, ol it
for the simplest schemes.

Thinking in the nonlinear case for generality where normally one has to solve
F(¢) = 0, Newton strategy may be one possibility to ge the solution. Even
the linear case may be included inside this problem doing the strategy enough
general to consider several application problems. The strategy consists in com-
puting an increment of the unknown solution (the roots of F(¢) = 0) using
a linearized version of the Taylor series representation of the function F in
an iterative way, so, starting from a guess solution F(¢)” # 0 compute the
increment Ay in the following form

F(e"™h) = F(o" + Ap) = 0
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until convergence, normally ||[F(¢*)|| < e. In the above expression 6 one
may distinguish the residual R = F(¢”) that is the non satisfaction of the
original equation when it is evaluated with an already rough approximation
©”. Moreover, the updating requires the evaluation of a matrix, called tangent
matriz  (IC) in resemblance to the one dimensional non linear solution by
Newton Raphson. That matrix is built from the derivative of each equation
present in F respect to each variable present in the vector .

In our context the residual of the original equation taken with # = 1 for
simplicity may be written as:
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where go?jl is our unknown in the Newton procedure and we use the iteration

v to reach the solution of the nonlinear equation at each time step.

To compute the tangent matrix we derive the residual respect to each compo-
nent of the variable vector, i.e.:
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with here we use « as (i,7) to simplify the notation and where the partial
derivative of the heat fluxes respect to the variable should be computed from

4.
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The same with the other components of the tangent matrix
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3.8  Boundary condition treatment

Without enter in too much details about this (readers may see some of the
notes of the course put in http://www.cimec.org.ar/twiki/courses here
we summarize how to write the boundary conditions and how these extra
equations modify the numerical system to solve.

3.3.1 Duirichlet boundary conditions

As the solution of the numerical problem is written in terms of increments of
a general Newton procedure, if the initial guess satisfy the Dirichlet boundary
conditions the next increments should be always null in order to maintain
the satisfaction of the boundary condition. This is a simple way avoiding the
modification of the linear system built during the procedure, only reducing this
system dropping the rows and columns of those nodes where this boundary
condition is applied.

(11)
Ka.:
’C:,a = H
for all & = (i,j) where Dirichlet boundary conditions are applied. [] means
making empty the corresponding rows and or columns of the array.

Other possibility may be



(12)

3.3.2  Neumann boundary conditions

For applying such a boundary condition we use ficticious nodes. This is one
of the different alternatives. Using the code the user should not worry about
this, the program makes it by itself. The strategy consist in defining an extra
node for each node of the boundary where Neumann boundary condition is
applied following the direction provided by the normal defined in this type of
boundary condition. In general as it was shown in 2 we have
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where ext(i, j,n) means the ficticious node corresponding to the node (3, j)
where the boundary conditions is applied following the 7 direction (unit nor-
mal is external oriented) and int(i, j,n) is the corresponding interior node in
the opposite direction of the external normal.

The contribution of these equations to the matrix is computed in a similar
way previously shown.

3.3.8 maxed boundary conditions

Left as exercise.

4 INFORMATIC DETAILS

See the text file my_notes.tzt for these details.



5 SOME EXAMPLES TO VALIDATE THE CODE

All the examples consist of rectangular domains aligned with cartesian axes.
Boundary left, right, left and bottom are immediately identified without a
sketch.

5.1 Ezxample # 1

Solve

V- (kVp)+G=0

Y= O VX c Fleft (14>
o=1 Vx € Dyighe
—KVQO -n = 0 Vx € thp U Fbottom

This example is a quasi one dimensional problem where analytic solution may
be obtained.

5.1.1 Caso # 1-(a)

For G = 0 the solution is a straight line between the left and right temperature
values.

First we prove this example and then we follow with non null source terms

5.1.2 Caso # 1-(b)

G = P with different values for p, p=1,2,3

5.1.3 Caso # 1-(c)

2
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5.2  FExample # 2

Solve

V- (kVp)+G=0 (15)

with the temperature of all the boundaries imposed to a given expression. Pro-
pose an expression for the solution, like ¢ = >~ a, ,2Py?, match the boundary
conditions to these field. After this get the source expression that balance the
above partial differential equation and after that treat to solve numerically
the problem analyzing how the error depend on the grid size.



6 PROBLEMS TO BE SOLVED WITH THE CODE

6.1 Problem # 1

Solve the advection-diffusion equation in a rectangular domain considering
that the fluid go into the domain through the left boundary with a temperature
of 100 Celsius degrees and found a heat bottom boundary at 300 Celsius. The
upper boundary is consider to far and then it does not transfer heat through it.
The right boundary is the output of the flow and it may be consider that the
thermal profile is developed. Compute the temperature all around the domain
at steady state for a fluid that have a thermal diffusivity of 0.001m?/seg
and the velocity field is contant, aligned with the x axis with a magnitude
of 1mm/seg. After getting this solution solve another similar problem but
changing the velocity magnitude from 1mm/seg to 1m/seg. Which changes
do you note in the solution ? Explain the quality of the solutions obtained and
if necessary explain how to improve them. Compare the numerical solution
with the analytical solution to the boundary layer approximation given in the
course theory.

6.2 Problem # 2

Consider a fin of a heat exhanger, a flat plate of rectangular shape that receive
at its root a fixed temperature of 100 Celsius coming from the liquid being
transported inside the tubes. Being the whole fin wetted by the air used to cool
it that it is at 20 Celsius of temperature in its bulk and being the velocity of the
air such that the convective film coefficient is around h i, = 100Watt/(m*K)
applied to the whole plate (up and down). Determine the efficiency of the heat
exchanger as a function of the fin length. The efficiency may be defined as the
heat flux removed relative to the maximum heat flux produced by an infinite
length fin.

As the convective heat transfer produced by the air at the up and down surface
may be computed as a reactive term, then, this problem may be reduced to a
2D problem reaction-diffusion equation (1) taking k = 100W/K and a width
of 10 cm for the fin.

Hint: take into account that the reaction term should be twiced because of
the up and down faces exposed to the convective heat transfer.
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Fig. 1. Problem 2
6.3 Problem # 3

Solve the time evolution of a thermal wave produced at the left boundary
of a rectangular domain and compare it with an analytical solution for such
a problem. Remember that a thermal wave may be produced using a time
varying Dirichlet boundary condition, i.e.

¢ = psin(wt) sin(ky) Vx € Liepy (16)
q=20 Vx € Ptop U Do U Fm’g
top
right
bottom

Fig. 2. Problem 3

6.4 Problem # 4

Given a rectangular domain formed by two materials with different conduc-
tivities. The less conductive material is placed at the middle vertically in two
parts, one at the upper part and the other at the lower part leaving a space

11



with the more conductive material in between. Analyze the influence of the
dimensions of the application of less conductive material on the global thermal
resistance of the device imposing two temperatures, one at the left boundary
and one at the right boundary, as it is shown in the corresponding figure. Its
width is fixed to a 20% of the domain length and the channel length is varied
to get the corresponding g = f(length) figure. Use T' = 300 Celsius at left,
T = 30 Celsius at right, ||, = 43W/m/K (steel) and kappalls = 1.5W/m/K

(porcelain).

width

{ top

1 -

left thermal channel right

bottom

Fig. 3. Problem 4
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